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Abstract
We present an optical turbulence model that has evolved from the PAMELA model.  After a preliminary 
report in SPIE 2003 it became apparent that more data was needed to refine this adaptive model.  This led 
us to take twelve months of over-land data (~100 meters pathlength) at the Chesapeake Bay Detachment of 
the Naval Research Lab.  We present data throughout the year with varying environments with comparison 
with the model prediction.  Our recent modification includes segmenting the windspeed to 3 sections, 
morning, afternoon, and night for better fitting.  This is an attempt to incorporate variable wind speed into 
the model which is known to contribute significantly to the turbulence in the atmosphere.  In addition, we 
present preliminary results from the over-the-bay data (10 km pathlength). 

1.0 Introduction 
After the PAMELA report in August 2003 at the SPIE meeting [Oh et. al. Vol. 5160, 25-30 SPIE 

2003], we have been collecting Cn
2 and weather data using a scintillometer at the Chesapeake Bay 

Detachment (CBD) of the Naval Research Laboratory.  We acquired twelve months of continuous data to 
test the model behavior from hot to cold months with various changing weather inputs.   

Since earlier report only yielded 1 week of data in June 2003, robustness of the model needed to 
be tested for all seasons.  In addition to modification of the model, we investigate the effect of humidity on 
Cn

2.  We also present a preliminary result from Cn
2 data taken across the Chesapeake Bay (10 miles) and its 

model fit.

2.0 Location and Data Logging: 
The Chesapeake Bay Detachment of the Naval Research Laboratory is located right on the 

Chesapeake Bay, MD.  The field where we collected Cn
2 data is on cliff side of the west Bay area.  It is the 

longest stretch of bay in the United States.  The transmitter is positioned just ~20 feet from the edge of the 
cliff where as the receiver is placed right outside the building 250.  The direction of the bay is N-S and the 
tall tress are to the west and the whole field opens to the Bay area to the east.  The site is mostly grassy area 
with an asphalt road.  There is minimal human intervention hence the location is prime real estate for this 
type of work.  The Optical Scientific, Inc LOA-004 scintillometer system consists of a transmitter and a 
receiver system positioned 110 meters pathlength in the grassy area.  The scintillometer collected data 
every 10 seconds where as the weather station collected data every 5 minutes. 

The weather station is positioned at the receiver side on a grassy area.  Although the wind speed is 
higher at the transmitter side (near the cliff), due to logistical difficulties, the weather station remained at 
the receiver side.  During month of December 2003, the weather station was moved to top of the building 
250 roof after we found that shades from nearby tall trees were blocking the solar sensors prematurely.  We 
did not notice significant changes in our weather data.   

Although we planned on taking 12 months worth of good data, we encountered numerous 
difficulties during our 1-year campaign.  Since the scintillometer needs routine checking and re-alignment, 
we find the scintillometer misaligned for months at a time during our absence.  Often, strong wind caused 
the scintillometer to misalign and remained misaligned until we showed up to fix it.  This actually was one 
of the biggest problems during data taking process.   We would collect data for few months at a time.  
When analyzing the data, we find that about 80% of the data was misaligned data.  However, we have vast 
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amount of data at different seasons with different temperatures, humidity, wind speed, and solar insolation 
and were able to extract good set of data for 8/12 months.  Here we present a good set of data with model 
from hot to cold months. 

3.0 Model Inputs and Changes 
Previously at the SPIE 2003 meeting, we presented a week worth of data and its comparison with 

the model.  Since a week worth of data during a hot summer month is inadequate to prove ruggedness of 
our model, in this report we include a number of results from hot to cold months. 

Each day has four separate plots.  The first graph on upper left evaluates the measured solar 
insolation with the predicted solar insolation (the solid indicates the predicted solar insolation).  The second 
graph on lower left illustrates the diurnal variation in temperature in F (solid line), humidity in % (dashed 
line).  In the third graph on upper right the theoretical (modeled solar insolation) Cn

2 estimates are 
compared to the measured values for Cn

2.  The final fourth graph on lower right is the wind speed with 
three separate sections as mentioned previously.  The wind speed is broken into three averaged separate 
sections: 1) midnight to sunrise, 2) sunrise to sunset, 3) sunset to midnight.  Separating into three different 
averaged wind speed values to the program is one of the most recent modifications to the model.  The need 
for this “partition” of the wind speed was obvious, as during the day, solar insolation is the most dominant 
factor contributing to Cn

2  where as at night, wind speed is the most influential factor.  Hence separating the 
wind speed to three parts allowed the model to reflect the real wind data.  Based on parallel work by Oh Y. 
et. al [5550-36 SPIE2004], we have set the lower limit of wind speed to 1.5m/s.  Also we have reduced the 
theoretical neutral events to reflect more real data.  The real data shows neutral events indistinctly, not with 
dramatic effect as presented in the SPIE 2003 paper.  A more thorough simulation and experimental data 
analysis on the model behavior can be found in Y. Oh et. al [5550-36 SPIE 2004]. 

4.0 Model and Cn
2 data 

The model behavior for cold month is shown in figure 1 for February 2004.  The day is 
characterized by mostly cloudy sky with very humid conditions.  Started to rain around 8:45am till 
~1:15pm.  The solar insolation was minimal (used 1/8) and wind was stronger in the morning.  The 
temperature was cold (predicted to be snow but turned out to be rain).  Our model predicts around 3x10E14 
level of Cn

2 throughout the day except in the neutral events.  As seen in the model with the data, the model 
reflects very well.  Although the neutral events are indistinct, we can see where it happens.  The model 
implies that Cn

2 during morning and night remains constant as we use constant factors mainly driven by the 
wind speed (note three different wind speed mentioned in the previous section).  The real data does not 
remain constant but rather fluctuate throughout the night.  We note that sometimes the model over/under 
predicts during night times.  This is due to the fact that we are not accounting for the humidity as well as 
fluctuating windspeed. 

Figure 2 shows about ½ clear day with clouds in and out all day.  Wind speed was below the 
threshold at the receiving end hence lower limit of 1.5m/s was used for all three sections. Examine behavior 
of Cn

2 from 5h (gmt) to 12h (gmt). As one can see, most of the other variables remain constant including 
humidity, and temperature.  When wind was calmer in the morning, Cn

2 varied drastically with large 
dynamic range, from 10E-12 to10E-15.  Contrarily, when the wind picked up at nighttime, it seemed to 
contribute to better seeing condition.  It is possible that the wind speed at the transmitter side varies greatly 
which we did not measure.  However, a glimpse of humidity contribution to Cn

2 can also be seen here as 
relative humidity increases from 60% to 80% between 5h to 10h.  Later in the section we investigate if such 
effect is present in other data as well.  Overall, the model tracks fairly well.
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I.  Cold Month - February 2, 2004 
Figure 1. 

II. Spring – March 28, 2004 
Figure 2.
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III.  Spring - March 30, 2004 
Figure 3.

IV Hot Month - June 2, 2004 
Figure 4.
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Figure 3 shows that throughout the day, it was mostly cloudy with on and off rain.  The humidity
is close to 100% with nominal temperature.  The wind speed was below the lower limit hence 1.5m/s is
used.  The model predicts fairly well even in this type of conditions.  During the day, the model is a very
good predictor.  At morning and night times, the model over predicts. Since wind speed is the constant
input in our model, the model does not explain the varying Cn

2 during those times.  However, holding wind
speed constant we note that significant amount of relative humidity seemed to have caused the turbulence
to calm down  hence lowering Cn

2 values below the predicted model.  We see this effect often throughout
the year, although not as dominant in colder months but strongly reflected in the hotter months.

June 2nd, 2004 started with some clouds in the morning but became clear throughout the day as 
shown in figure 4. The attenuation in solar insolation in the morning is due to cloud cover with
intermittency.  The model does good job at predicting Cn

2 as partial blocking of the sun in the morning is
reflected strongly in the data.  The wind was minimal throughout the day hence the 1.5 m/s default was
used. The humidity is relatively higher in the night time.  We have reduced the neutral events so that it 
matches the data better.   Apparently, the model fits well for nighttime and daytime.  Seems that about 80% 
relative humidity is optimally tuned for the model.

Figure 5 is a corrected results from 2003 SPIE report with modification applied as mentioned in
the previous sections.  The model does an excellent job at predicting Cn

2 given the input parameters.
As temperature cools and enters the fall season, we see a drop in the amount of solar insolation as 

well as shorten solar duration as seen in figure 6.  The humidity is nominal throughout the day with higher
wind during the morning compared to minimal wind at afternoon and night.  Although the overall shape of 
Cn

2 data is strikingly similar, the model over estimates the day time Cn
2 by ½ order of magnitude.  Although

no obvious effect can be related to such an effect, perhaps a local effect such as higher wind speed at the
transmitter side can cause such an effect.

V Hottest Month – June 30, 2003 (corrected from 2003) 
Figure 5. 
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VI Fall – October 13, 2004 
Figure 6.

VII – Cold Month - November 9, 2003 
Figure 7.
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First, solar insolation in figure 7 shows that the surrounding trees prematurely blocked the solar
radiation.  Hence one can see the premature cutoff in solar insolation at around 20h (gmt).  The day was 
clear with no clouds.  The wind was stronger in the morning but calm in the afternoon and at night.  Wind
was higher before the sunset than after sunset but Cn

2 level is less before sunrise than sunset.  One obvious
effect can be seen here.  When wind was minimal (20h to 29h), Cn

2 increased and oscillated.  This was 
strikingly similar to the report by Doss-Hammel et. al. [SPIE 5550-35] where he reported similar effect for 
wind speeds below about 2m/s.  We also see the same effect although not as drastic in the humid
environment.

5.0 Humidity Effect 
The following five results are presented in order to distinguish the effect of the humidity to Cn

2.
We concluded that the best way to really understand humidity is to look at as many examples as possible.
Here we present four over-the-land data and  one over-the-water data to show the effect of humidity.

The effect of the humidity is fairly obvious as the reader is encouraged to compare the night time
data only.  Since during the day, the solar insolation dominates, the humidity effect is less obvious.  Hence 
concentrating on comparing two sections “a” and “b” where “a” is between midnight to sunrise and “b” is 
sunset to midnight, the effect is counter-intuitive but very evident. 

As shown in figure 8, for April 2, 2004, higher humidity during “a” compared to lower humidity
at “b” causes Cn

2 to behave the opposite; Cn
2 is lower at “a” than “b”.  With other parameters being held 

constant and wind speed being minimal, the only varying parameter was the humidity.  The immediate
correlations with windspeed is not so evident in this data.  However, since windspeed and humidity were 
not separate parameters in this data, concluding humidity- Cn

2 inverse relationship is premature.  More data
needs to be examined.

Humidity I - April 2, 2004 
Figure 8.
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Humidity II – February 27, 2004 
Figure 9.

Figure 9 supports the previous Humidity- Cn
2 inverse relationship.  As shown low humidity

throughout the day triggers a higher Cn
2.  The model clearly under predicts the data since humidity is not an

input to the model.  The humidity being as low as it is, it is a great puzzling effect to see this type of 
relationship.

Figure 10 is a prime example of coupled windspeed and humidity.  The presence of low wind
speed and low humidity at “a” causes Cn

2 to oscillate more and increase where as higher wind speed and
high humidity at “b” causes Cn

2 to decrease and calm down.  This is the most puzzling effect as two 
variables are counter intuitively affecting Cn

2.
Similar effects are evident in figure 11 where wind was constant throughout the day.  Humidity is

high throughout the day.  If we consider this day as total separation of windspeed and humidity, the effect
is strikingly obvious as higher humidity causes Cn

2 to decrease.  The model undoubtedly over predicts Cn
2

as expected. 
We present the following results shown in figure 12 obtained from a separate passive scintillometer

developed by Moore et al. [SPIE 5160-53].  Following the relationship with humidity and windspeed, Cn
2

data acquired for the across the bay shows very flat graph compared to data obtained for the over the land.
The “hump” in the middle is minimized as the big bay water works as a heat sink for the solar radiation
received.  The weather data shown is data collected at the receiver side therefore it does not show correct 
air temperature and winspeed throughout the pathlength of the bay.  But one can guess that temperature is
lower and humidity and winspeed is higher throughout the 10 mile pathlength.  Given that assumption, we 
do expect Cn

2 to decrease as expected.  The data shows that such is true.  Although only one result is
presented here, most of the data taken over 12 months show more or less the same trait.  This is a prime
example of the humidity and windspeed contribution to Cn

2.
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Humidity III – February 16, 2004 
Figure 10.

Humidity IV – March 30, 2004 
Figure 11.
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Humidity V - Over the Chesapeake Bay Cn
2

Figure 12 (Across the Chesapeake Bay - 10 miles)

7.0 Conclusion
The results from 2003-2004 Cn

2 data collected at CBD offers preliminary insight into several areas.
First the model behaves fairly well throughout the year from hot to cold months.   Although some
over/under prediction is seen, the lack of  humidity input to the model is identified.  The coupled humidity-
windpeed effect is of great interest and the relationship is shown well in this report.  We identified that
humidity and Cn

2 is inversely proportional.  The model has some weakness to the windspeed [Y. Oh et al.
SPIE 5550-36], forcing us to use a lower limit in order for the model to behave well with decreasing
windspeed.  Future theoretical and experimental study is needed to confine this elusive variable.  As most
similarity based theory and model suggest no such thing as “zero” wind speed exist.  We know that 
significantly low wind speed (0-3m/s) is a problem to the theory and the model.  This area of unstable
regime should be explored experimentally and theoretically so that this model as well as other models can 
improve its effectiveness in modeling Cn

2 at low wind speeds. 
As far as model’s capability to estimate the over the water data, the model does not perform well.

Several modifications can be made to work well for marine environment.  One of the first modifications is
the reduction of solar radiation input into the model.  We know that land absorbs and re-emits the heat from
the sun.  When there is water, this effect is minimal as the water acts as a heat sink.  Hence the re-radiation 
factor in the model can be adjusted to match the effect of water heat sink.  Second, correct surface 
roughness length for the water needs to be experimentally obtained.   The PAMELA model does not
contain a correct surface roughness value for water.  It is a crucial parameter which can only be obtained 
experimentally.  Third, a true surface temperature of water and windpseed and humidity of the bay area 
needs to be measured or extrapolated.  With such inputs, the modification to the model is forseen. 

The model to include humidity as one of the input is the most obvious step to improve the model.
Some difficulties arise from incorporating the humidity into the model.  First , there is very little work done 
in trying to understand humidity contribution to Cn

2.  The relationship must be obtained experimentally and 
an in-dept theoretical work must support the relationship.  Second, separating windspeed and humidity
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outside environment is almost impossible as two are intertwined and varying constantly.  Hence an 
experiment must be performed in a controlled environment where the two variables are separable and 
controllable. Third, humidity factor at a different environment is needed to support the claim.  Would 
humidity at a more dry environment cause the same effect?  Such questions can be answered with more 
involved experiment at different locations 
 The model is an evolving coupled equations with room for improvement.  Based on results from 
CBD, given the input parameters, we can predict and/or explain the behavior of Cn

2.  Various work done by 
Doss-Hammel et. al. [5550-35] and Y. Oh et. al.[5550-36] also support strengths and weaknesses of the 
model to windspeed.  The robustness of the model to various terrain and weather types is self evident.  
However, with some modifications, this simplified similarity based model can be utilized with greater 
accuracy.

6.0 Future Work 

We plan on performing some computer analysis on the data collected and find a relationship between 
humidity and Cn

2.  Another anticipated experiment is a controlled experiment where we run scintillometer 
inside the building in a long corridor where we hold all parameters constant except the wind speed and 
humidity.  Hence controlling windspeed and humidity separately will allow us to ascertain the relationship 
distinctly.   
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